Soluzioni biennio 2019

1. DIAMO I NUMERI!

Soluzione [0]

Infatti dovrebbero essere multipli di 3.5.4 = 60, e senza lo 0 tra le cifre disponibili non se ne formerà nessuno

2. CORREVA L'ANNO...

Soluzione [7]

Le potenze di 3 terminano con 3, 9, 7, 1, 3, 9, 7, 1, ..., ripetendosi ogni 4, e 2019 = 2016 + 3

3. TELEFONO ASSASSINO

Soluzione [
$$\cong$$
 97,22 m; \cong 24%; s = $\frac{35}{18}v$ (oppure s \cong 1,944 v)]

- 1. Dalla nota relazione spazio = velocità x tempo si ottiene $s = 50 \cdot \frac{1000}{3600} \cdot 7 \cong 97,22 \text{ m}$
- 2. Indicato con r il rapporto spazio/lunghezza della pista si ha $r\% = \frac{97,22}{400} \cdot 100 \cong 24\%$
- 3. Indicata con v la velocità (in km/h) del motociclo e tenuto conto del punto 1 si ottiene lo spazio s (in metri) $s = v \cdot \frac{1000}{3600} \cdot 7$ cioè $s = \frac{35}{18}v$ oppure $s \cong 1,944v$

Commento: Il rischio è alto in quanto nel tempo di un selfie si percorrono "al buio" quasi 100 metri

4. POLTRONE E SOFÀ

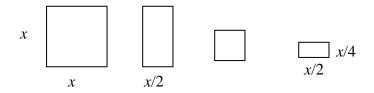
Soluzione [70%; 20% p]

1. Denotato con p il prezzo di listino, si ha:

Prezzo	Primo	Secondo	Totale sconto	Totale sconto
listino	sconto	sconto		%
p	0,50p	$0,50 \cdot 0,40p$	$0,50p + 0,50 \cdot 0,40p = 0,70p$	70

2. Tenuto conto che lo sconto globale è pari al 70% del prezzo di listino e il primo sconto è del 50%, il contributo del secondo sconto equivale al 20% del prezzo di listino.

In alternativa, il contributo del secondo sconto è $0.50 \cdot \frac{40}{100} p = 20\% p$


5. FESTA DELLE SCUOLE

Soluzione [15]

 $68 = 2^2 \cdot 17$, ma solo 2 e 4 dividono 60 e il minimo numero di snack si ha col numero maggiore di bibite, cioè 4, e sarà 60/4 = 15

6. IL TOVAGLIOLO

Soluzione [24 cm]

Sia x è il lato del tovagliolo di forma quadrata. Dopo le tre piegature previste si ottiene una forma rettangolare di dimensioni x/2 e x/4. Pertanto $\left(\frac{x}{2}\right) \cdot \left(\frac{x}{4}\right) = 72$ $x^2 = 576$ e x = 24 cm

7. TRIANGOLO & RETTANGOLI

Soluzione [Hanno tutti la stessa area, doppia di quella di ABC]

Hanno tutti la stessa area, doppia di quella di ABC, perché ognuno di loro ha la stessa base e la stessa altezza di ABC

8. LA SCACCHIERA

Soluzione [24; 220;
$$\frac{2n(n+5)}{25}$$
]

Per costruire la scacchiera 15x15 cm (fig.3), 3x3 quadratini, occorrono 4 righe di 3 bastoncini e 4 colonne di 3 bastoncini, in totale $4\cdot 3 + 4\cdot 3 = 24$ bastoncini, pertanto per costruire la scacchiera 50x50 cm, 10x10 quadratini, occorrono 11 righe di 10 bastoncini e 11 colonne di 10 bastoncini , cioè in totale $11\cdot 10 + 11\cdot 10 = 220$ bastoncini.

Per costruire una scacchiera $n \times n$ cm, cioè $\frac{n}{5} \times \frac{n}{5}$ quadratini, occorrono in totale

$$\left(\frac{n}{5}+1\right)\left(\frac{n}{5}\right)+\left(\frac{n}{5}+1\right)\left(\frac{n}{5}\right)=\frac{2n(n+5)}{25}$$
 bastoncini.

9. MEDICO E AMMALATI

Soluzione [32 e 5, 10, 49 anni]

 $2450 = 2 \cdot 5^2 \cdot 7^2$, quindi le possibili scomposizioni in prodotto di 3 fattori plausibili sono:

	SEMISOMMA		
1	35	70	53
1	49	50	50
5	5	98	54
2	25	49	38
5	10	49	32
7	14	25	23
1	25	98	62
5	7	70	41
7	7	50	32
2	35	35	36
5	14	35	27
7	10	35	26

Dato che l'**infermiera** non sa rispondere, deve avere **32 anni**, perché è l'unico che compare 2 volte. Date che le età dei **pazienti** devono essere diverse tra loro, essi hanno **5, 10 e 49 anni**.

10. IL GIOCO DI MATTEO

<u>Soluzione</u> [125 cm = 1,25 m]

Sia x l'altezza incognita, allora

dopo il primo rimbalzo l'altezza raggiunta è $x \cdot \frac{3}{5}$

Dopo il secondo rimbalzo l'altezza raggiunta è $\left(x \cdot \frac{3}{5}\right) \cdot \frac{3}{5} = x \cdot \left(\frac{3}{5}\right)^2$

Quindi dopo il quarto rimbalzo l'altezza raggiunta è $x \cdot \left(\frac{3}{5}\right)^4$

Pertanto $x \cdot \left(\frac{3}{5}\right)^4 = 16,2$ ed x = 125 cm